NASA News: NASA Awards Protective Services Contract

CLEVELAND -- NASA has awarded Linxx Global Solutions of Virginia
Beach, Va., a contract to provide protective services at the Glenn
Research Center in Cleveland and Plum Brook Station in Sandusky, Ohio.

The firm-fixed-price contract begins April 1, with a maximum
performance period of five years. The maximum potential value of this
contract is approximately $31.5 million.

Linxx Global Solutions, a service-disabled veteran-owned small
business, will provide services in emergency management, dispatch
operations, classified national security protection, medical first
responders, credential management, traffic and access control,
locksmith services, patrol operations, physical security, personnel
security and security incident response.

For information about NASA and agency programs, visit:



Experimental Payloads Selected For Commercial Suborbital Flights

WASHINGTON -- NASA's Flight Opportunities Program has selected 24
cutting-edge space technology payloads for flights on commercial
reusable launch vehicles, balloons and a commercial parabolic aircraft.

Sixteen of the payloads will ride on parabolic aircraft flights, which
provide brief periods of weightlessness. Five will fly on suborbital
reusable launch vehicle test flights. Two will ride on high-altitude
balloons that fly above 65,000 feet. One payload will fly on the
suborbital launch vehicle and high-altitude balloon platforms. The
flights will take place in 2012 and 2013.

Flight platforms include the Zero-G parabolic airplane, Near Space
Corp. high altitude balloons and reusable launch vehicles from
Armadillo Aerospace, Masten Space Systems, UP Aerospace and Virgin Galactic.

"NASA's Flight Opportunities Program leverages investment in
commercially available vehicles and platforms to enable new
technology discoveries," said Michael Gazarik, director of NASA's
Space Technology Program at NASA Headquarters in Washington. "These
flights enable researchers to demonstrate the viability of their
technologies while taking advantage of American commercial access to near-space."

Payloads selected for flight on a parabolic aircraft are:
-- "Microgravity Health Care," Scott Alexander Dulchavsky, Henry Ford
Health System, Detroit
-- "Activity Monitoring During Parabolic Flight," Peter Cavanagh,
University of Washington, Seattle
-- "Physics of Regolith Impacts in Microgravity Experiment," Josh
Colwell, University of Central Florida, Orlando
-- "UAH CubeSat Parabolic Flight Testing," Francis Wessling,
University of Alabama, Huntsville
-- "Fuel Mass Gauging Under Zero-G Environment Based on Electrical
Capacitance Volumatric Tomography Techniques," Manohar Deshpande,
NASA's Goddard Space Flight Center, Greenbelt, Md.
-- "Microgravity Effects of Nanoscale Mixing on Diffusion Limited
Processes Using Electrochemical Electrodes," Carlos Cabrera,
University of Puerto Rico, San Juan
-- "Effects of Reduced Gravity on Flow Boiling and Condensation,"
Issam Mudawar, Purdue University, West Lafayette, Ind.
-- "OSIRIS-REx Low-Gravity Regolith Sampling Tests," Joseph Vellinga,
Lockheed Martin Space Systems Company, Denver
-- "Parabolic Flight: Validation of Electro-Hydrodynamic Gas-Liquid
Phase Separation in Microgravity," Boris Khusid, New Jersey Institute
of Technology, Newark
-- "Non-Invasive Hemodynamic Monitoring in Microgravity," Gregory
Kovacs, Stanford University, Stanford, Calif.
-- "Parabolic Flight Evaluation of a Hermetic Surgery System for
Reduced Gravity," George Pantalos, University of Louisville,
Louisville, Ky.
-- "Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
Experiment," Eric Golliher, NASA's Glenn Research Center, Cleveland
-- "Effects of Reduced and Hyper Gravity on Functional Near-Infrared
Spectroscopy Instrumentation," Greg Adamovsky, NASA Glenn
-- "Sintering of Composite Materials Under Reduced Gravity Conditions
("Cosmic" Project), Orazio Chiarenza, the Advanced Technical
Institute, Fuscaldo, Italy
-- "Boston University Student Proposal for Deployable Solar and
Antenna Array Microgravity Testing," Theodore Fritz, Boston
-- "Particle Dispersion System for Microgravity Environments," John
Marshall, SETI Institute, Mountain View, Calif.

Payloads selected for flight on a suborbital launch vehicle are:
-- "Near-Zero Gravity Cryogenic Line Chilldown Experiment in a
Suborbital Reusable Launch Vehicle," Jacob Chung, University of
Florida, Gainesville, Fla.
-- "Collection of Regolith Experiment on a Commercial Suborbital
Vehicle," and "Collisions Into Dust Experiment on a Commercial
Suborbital Vehicle, Josh Colwell, University of Central Florida,
-- "Polar Mesospheric Cloud Imaging and Tomography Experiment," Jason
David Reimuller, Space Science Institute, Boulder, Colo.
-- "Vision Navigation System Technology Demonstration," Douglas
Zimpfer, Draper Laboratory, Houston

Payloads selected for flight on a high altitude balloon are:
-- "Flight Demonstration of an Integrated Camera and Solid-State Fine
Steering System," Eliot Young, Southwest Research Institute, Boulder,
-- "Initial Flight Testing of a UAT ADS-B Transmitter Prototype for
Commercial Space Transportation Using a High Altitude Balloon,"
Richard Stansbury, Embry-Riddle Aeronautical University, Daytona Beach, Fla.

The "Structural Health Monitoring for Commercial Space Vehicles"
payload from Andrei Zagrai of the New Mexico Institute of Mining and
Technology in Socorro, will fly on a suborbital launch vehicle and a
high-altitude balloon.

NASA manages the Flight Opportunities Program manifest, matching
payloads with flights, and will pay for payload integration and the
flight costs for the selected payloads. No funds are provided for the
development of these payloads. Other suborbital flight vendors on
contract to NASA will provide flights after they have successfully
flown their qualifying vehicles.

The Flight Opportunities Program, part of NASA's Space Technology
Program, is managed at NASA's Dryden Flight Research Center in
Edwards, Calif. NASA's Ames Research Center at Moffett Field, Calif.
manages the payload activities for the program.

For more information on the Flight Opportunities program, visit:



NASA's Dawn Sees New Surface Features on Giant Asteroid Vesta

WASHINGTON -- NASA's Dawn spacecraft has revealed unexpected details
on the surface of the giant asteroid Vesta. New images and data
highlight the diversity of Vesta's surface and reveal unusual
geologic features, some of which were never previously seen on asteroids.

Vesta is one of the brightest objects in the solar system and the only
asteroid in the so-called main belt between Mars and Jupiter visible
to the naked eye from Earth. Dawn found that some areas on Vesta can
be nearly twice as bright as others, revealing clues about the
asteroid's history.

"Our analysis finds this bright material originates from Vesta and has
undergone little change since the formation of Vesta over 4 billion
years ago," said Jian-Yang Li, a Dawn participating scientist at the
University of Maryland, College Park. "We're eager to learn more
about what minerals make up this material and how the present Vesta
surface came to be."

Bright areas appear everywhere on Vesta but are most predominant in
and around craters. The areas vary from several hundred feet to
around 10 miles across. Rocks crashing into the surface of Vesta seem
to have exposed and spread this bright material. This impact process
may have mixed the bright material with darker surface material.

While scientists had seen some brightness variations in previous
images of Vesta from NASA's Hubble Space Telescope, Dawn scientists
also did not expect such a wide variety of distinct dark deposits
across its surface. The dark materials on Vesta can appear dark gray,
brown and red. They sometimes appear as small, well-defined deposits
around impact craters. They also can appear as larger regional
deposits, like those surrounding the impact craters scientists have
nicknamed the "snowman."

"One of the surprises was the dark material is not randomly
distributed," said David Williams, a Dawn participating scientist at
Arizona State University, Tempe. "This suggests underlying geology
determines where it occurs."

The dark materials seem to be related to impacts and their aftermath.
Scientists theorize carbon-rich asteroids could have hit Vesta at
speeds low enough to produce some of the smaller deposits without
blasting away the surface.

Higher-speed asteroids also could have hit the asteroid's surface and
melted the volcanic basaltic crust, darkening existing surface
material. That melted conglomeration appears in the walls and floors
of impact craters, on hills and ridges, and underneath brighter, more
recent material called ejecta, which is material thrown out from a
space rock impact.

Vesta's dark materials suggest the giant asteroid may preserve ancient
materials from the asteroid belt and beyond, possibly from the birth
of the solar system.

"Some of these past collisions were so intense they melted the
surface," said Brett Denevi, a Dawn participating scientist at the
Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
"Dawn's ability to image the melt marks a unique find. Melting events
like these were suspected, but never before seen on an asteroid."

Dawn launched in September 2007. It will reach its second destination,
Ceres, in February 2015.

"Dawn's ambitious exploration of Vesta has been going beautifully,"
said Marc Rayman, Dawn chief engineer at NASA's Jet Propulsion
Laboratory (JPL) in Pasadena, Calif. "As we continue to gather a
bounty of data, it is thrilling to reveal fascinating alien landscapes."

Dawn's mission is managed by JPL for NASA's Science Mission
Directorate in Washington. Dawn is a project of the directorate's
Discovery Program, managed by NASA's Marshall Space Flight Center in
Huntsville, Ala. UCLA is responsible for overall Dawn mission
science. Orbital Sciences Corp. in Dulles, Va., designed and built
the spacecraft. The German Aerospace Center, the Max Planck Institute
for Solar System Research, the Italian Space Agency and the Italian
National Astrophysical Institute are international partners on the
mission team.

To view the new images, visit:



◄ Share this news!

Bookmark and Share


The Manhattan Reporter

Recently Added

Recently Commented